3 resultados para Water Treatment Plants

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The valuation of ecosystem services such as drinking water provision is of growing national and international interest. The cost of drinking water provision is directly linked to the quality of its raw water input, which is itself affected by upstream land use patterns. This analysis employs the benefit transfer method to quantify the economic benefits of water quality improvements for drinking water production in the Neuse River Basin in North Carolina. Two benefit transfer approaches, value transfer and function transfer, are implemented by combining the results of four previously published studies with data collected from eight Neuse Basin water treatment plants. The mean net present value of the cost reduction estimates for the entire Neuse Basin ranged from $2.7 million to $16.6 million for a 30% improvement in water quality over a 30-year period. The value-transfer approach tended to produce larger expected benefits than the function-transfer approach, but both approaches produced similar results despite the differences in their methodologies, time frames, study sites, and assumptions. © 2010 ASCE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antisense deoxyoligonucleotide (ASO) gene silencing was investigated as a potential disinfection tool for industrial and drinking water treatment application. ASOs bind with their reverse complementary mRNA transcripts thereby blocking protein translation. While ASO silencing has mainly been studied in medicine, it may be useful for modulating gene expression and inactivating microorganisms in environmental applications. In this proof of concept work, gene targets were sh ble (zeocin resistance) and todE (catechol-2,3-dioxygenase) in Pichia pastoris and npt (kanamycin resistance) in Pseudomonas putida. A maximum 0.5-fold decrease in P. pastoris cell numbers was obtained following a 120 min incubation with single-stranded DNA (ssDNA) concentrations ranging from 0.2 to 200 nM as compared to the no ssDNA control. In P. putida, a maximum 5.2-fold decrease was obtained after 90 min with 400 nM ssDNA. While the silencing efficiencies varied for the 25 targets tested, these results suggest that protein activity as well as microbial growth can be altered using ASO gene silencing-based tools. If successful, this technology has the potential to eliminate some of the environmental and health issues associated with the use of strong chemical biocides. However, prior to its dissemination, more research is needed to increase silencing efficiency and develop effective delivery methods.